熱作模具鋼的抗壓強度(熱擠壓模具鋼)
今天給各位分享熱作模具鋼的抗壓強度的知識,其中也會對熱擠壓模具鋼進行解釋,現在開始吧!
熱鍛模和錘鍛模有什么區別?熱作模具有是什么? 還有熱鍛模選用的材料和加工工藝路線是怎樣的?謝謝
熱鍛模和錘鍛模都屬于熱鍛模,也就是說錘鍛模是熱鍛模的一種。

熱作模具主要用于制造對高溫狀態下的工件進行壓力加工的模具,如熱鍛模
具、熱擠壓模具、壓鑄模具、熱鐓鍛模具等。
常用的熱作模具材料為中、高含碳量的添加鉻鎢鉬鋇等合金元素的合金模具鋼。對
特殊要求的熱作模具有時采用高合金奧氏體耐熱模具鋼、高溫合金、難熔合金制造。
選擇模具材料是要注意:
一、模具材料的基本性能
進行模具材料選擇時,必須首先考慮模具的某些基本性能必須能適應所制造的模具的
需要,在一般情況下,其中三種性能是主要的,即鋼的耐磨性、韌性、硬度和紅硬性。這三種
性能可以比較全面地反映模具材料的綜合性能,應可以在一定程度上決定其應用范圍。
當然對于一種模具的要求來說,可能其中的一種或兩種是主要的,而另外的一種或
兩種是次要的。
1. 模具材料的耐磨性模具工作時,表面往往要與工件產生多次強烈的摩擦,模具
必須在此情況下仍能保持其尺寸精度和表面粗糙度,不致于早期失效。要求模具材料既
能承受機械磨損,而且在承受重載和高速摩擦時,模具被摩擦表面能夠形成薄而致密附
著的氧化模,保持潤滑作用,防止模具和被加工工件的表面之間產生粘附、焊接招致工件
表面擦傷,又能減少模具表面進一步氧化造成的損傷。為了改善模具材料的耐磨性,就
要采取合理的生產工藝和處理工藝,使模具材料既具有高硬度又使材料中的碳化物等硬
化相的組成、形貌和分布合理,當然模具工作過程中的潤滑情況和模具材料的表面處理,
也對改善模具的耐磨性能有良好的影響。
2.模具材料的韌性對于受強烈沖擊載荷的模具,如冷作模具的沖頭,錘用熱鍛模
具、冷鐓模具、熱鐓鍛等,模具材料的韌性是十分重要的考慮因素,對于在高溫下工
作的模具,還必須考慮其在工作溫度下的高溫韌性。對于多向受沖擊載荷的模具,還必
須考慮其等向性。
模具材料的化學成分、晶粒度、碳化物、夾雜物的組成數量、形貌、尺寸和分布情況:
金相組織、微觀偏析等,都會對材料的韌性帶來影響。鋼的純凈度、鍛軋變形的方向會對
橫向性能產生很大的影響。模具材料的韌性往往和耐磨性、硬度是互相矛盾的。因之根
據模具的具體工作情況,選擇合理的模具材料,并采用合理的精煉、熱加工和熱處理、表
面處理工藝使模具材料得到耐磨性和韌性等綜合性能的最佳配合,以適應模具的需要,
足模具材料的重要發展的途徑。
3. 硬度和紅硬性硬度是模具材料的主要技術性能指標,模具在工作時必須具有高
的硬度和強度,才能保持其原來的形狀和尺寸,一般冷作模具鋼,要求其淬回火硬度為
60HRC 左右,而熱作模具鋼為45-50HRC 左右,并且要求熱作模具材料在其工作溫度下
仍保持一定的硬度。
紅硬性是指模具材料在一定溫度下保持其硬度和組織穩定性抗軟化的能力,對于熱
作模具材料和部分重載荷冷作模具材料,是重要的性能指標。
另外,還要根據不同模具的實際工作條件,分別考慮其實際要求的性能,如對熱作模具鋼要考慮其抗冷熱疲勞性能,對壓鑄模具應考慮其耐融熔金屬的沖蝕性能;對于重載
荷型腔模具應注意其等向性;對于高溫工作的熱作模具應考慮其在工作溫度下的抗氧化
性能;對于在腐蝕介質工作的模具,應注意其抗腐蝕性能;對在高載荷下工作的模具應考
慮其抗壓強度、抗拉強度和抗彎強度、疲勞強度及斷裂韌度等。
二、模具材料的工藝性能
在模具總的制造成本中,特別是對于小型精密復雜模具,模具材料費往往只占總成
本的10-20%,有時甚至低于10%;而機械加工、熱處理、表面處理、裝配、管理等費用
要占成本的80%以上。所以模具材料的工藝性能就成為影響模具成本的一個重要因素,
改善模具的工藝性能,不僅可以使模具生產工藝簡單,易于制造,而且可以有效地降低模
具制造費用。模具材料的工藝性能,經常要考慮的有以下幾種。
1. 可加工性模具材料的可加工性包括冷加工性能,如切削、磨削、拋光、冷擠壓、冷拉
工藝性,熱加工性能包括熱塑性和熱加溫度范圍等。模具鋼主要屬于過共析鋼和萊氏體
鋼,冷加工和熱加工性能一般都不太好,在生產過程中,必須嚴格地控制熱加工和冷加工的
工藝參數,以避免產生缺陷和廢品,另一方面還必須通過改善鋼的純凈度,減少有害的雜質,
改善鋼的組織狀態,并采取一些措施,以改善鋼的工藝性能,降低模具的制造費用。
為了改善模具鋼的切削性和磨削性,從20 世紀30 年代開始,研究向鋼中加入適量
的硫、鉛、鈣、稀土金屬等元素或導致模具鋼中碳的石墨化的元素,發展了各種易切削模
具鋼。以后發現有些易切削元素加入以后,會在模具鋼中生產一些有害的夾雜物(如硫
化鐵等),會使鋼的力學性能,特別是橫向的塑性、韌性下降,于是又在精煉后期對鋼水進
行變性處理,通過加入變性劑(如(SiCa,稀土元素等),形成富鈣硫化物或稀土硫化物使硫
化物球化,抑制了硫對鋼的力學性能的不利影響,保留和發揮了其對鋼的可加工性和磨
削性的有利作用,使易切削模具鋼得到進一步地發展。
有些模具材料,如高釩高速鋼、高釩高合金模具鋼的磨削性很差、磨削比很低,不便
于磨削加工,近年來改用粉末冶金生產,可以使鋼中的碳化物細小、均勻,完全消除了普
通工藝生產的高釩模具鋼中的大顆粒碳化物,不但使這類鋼的磨削性大為改善,而且改
善了鋼的塑性、韌性等性能,使之能在模具制造中推廣應用。
有些模具對表面粗糙度要求很低,如要求鏡面拋光的塑料模具和一些冷作模具。就
要采用拋光性能很好的模具材料,這類鋼種往往要采用電渣重熔或真空電弧重熔等工藝
進行精煉,得到高純凈度的鋼材,以適應鏡面拋光的要求。
皮紋加工性:有些塑料制品要求制造有皮紋、裝飾性圖案或文字花樣的表面,為了生
產這些制品,就要求在壓制這些制品的模具表面加工出相應的清晰的花紋、圖案來。而
加工這些圖案、皮紋一般是采用化學蝕刻工藝,要求模具材料要能適應這種化學蝕刻工
藝,蝕刻以后,能夠在模具表面得到圖案清晰、紋理清楚的皮紋和圖案。
鑄造工藝性能:為了簡化生產工藝,國內外近年來致力于發展采用鑄造工藝直接生
產出接近成品模具形狀的鑄造毛坯。如我國已經研究采用鑄造工藝生產一部分冷作模
具、熱作模具和玻璃成形模具。相應地發展了一些鑄造模具用鋼,對這類材料要求具有
良好的鑄造工藝性能,如流動性、收縮率等。
焊接性:有些模具要求在工作條件最苛刻的部分堆焊接特種耐磨或耐蝕材料,有些
模具希望在使用過程中采用堆焊工藝進行修復后重新使用。對這類模具就要求選用焊
接性好的模具材料,以簡化焊接工藝,可以避免或簡化焊前預熱和焊后處理工藝,更好地
適應焊接工藝的需要,相尖地發展了一批焊接性良好的模具材料。
冷變形性:為了簡化工藝,提高模具的制造效率,對批量生產的型腔模具,有些采用
冷擠壓工藝壓制型腔,用淬硬的凸模將模具的型腔直接壓制出來,要求模具材料具有良
好的冷變形性能,如塑料模具鋼中的低碳低硅鋼就具有良好的冷變形性能。
2. 淬火溫度和淬火變形為了便于生產,希望模具材料的淬火溫度范圍要寬一些,
特別是有些模具要求采用火焰加熱局部淬火時,難以精確地測量和控制溫度,就要求模
具鋼能適應較寬的淬火溫度范圍,模具在熱處理時,要求其變形程度要小,特別是一些形
狀復雜的精密模具,淬硬以后難以修整,就對淬回火的變形程度要求更為嚴格,應該選用
微變形模具鋼制造。
3.淬透性和淬硬性淬硬性主要取決于鋼的碳含量,淬透性主要取決于鋼的化學成
分、合金元素含量和淬火前的組織狀態。對于大部分要求高硬度的冷作模具,對淬硬性
要求較高;對于大部分熱作模具和塑料模具,對于硬度的要求不太高,往往更多地考慮其
淬透性;特別是對于一些大截面深型腔模具,為了使模具的心部也能得到良好的組織和
均勻的硬度,就要求選用淬透性好的模具鋼。另外對于形狀復雜、要求精度高又容易產
生熱處理變形的模具,為了減少其熱處理變形,往往盡可能采用冷卻能力弱的淬火介質
(如油冷、空冷、加壓淬火或鹽浴淬火),就需要采用淬透性較好的模具材料,以得到滿意
的淬火硬度和淬硬層深度。
4.氧化脫碳敏感性模具在加熱過程中,如果產生氧化、脫碳現象,就會改變模具的
形狀和性能,影響模具的硬度、耐磨性和使用壽命,招致模具早期失效。
有些鉬含量高的模具鋼,由于容易氧化、脫碳,有一段時間限制了其推廣應用,直到
熱處理工藝裝備發展以后,采用特種熱處理工藝(如真空熱處理,可控氣氛熱處理、鹽浴
熱處理等)以后,能夠避免氧化、脫碳,這類模具鋼,才順利得到推廣應用。鉬基合金雖然
具有極為優秀的高溫性能,但是由于在高溫下極易氧化,嚴重地限制了其應用范圍。
至于加工路線要具體到哪套模具哪個工件訂制加工路線了
模具鋼材2344是什么材料 ;可以用什么材料代替
【2344模具鋼】為德國牌號,德國DIN 標準材料編號1.2344,是耐壓熱作模具鋼。該鋼經電渣重熔,材質均勻,淬透性良好,具有優良的機械加工性能及拋光性能, 高韌性及可塑性,良好的高、低溫耐磨性以及抗高溫疲勞和耐熱性。化學成份:鉻(Cr)5.0、鉬(Mo)1.3、釩(V)1.0。
【可替代鋼號】美國 AISI/SAE,標準牌號 H13;中國 GB 標準牌號:4Cr5MoVSi;瑞典 UDDEHOLM 標準牌號:ORVAR 2M。
瑞典一勝百 (ASSAB) 標準牌號:8402/8407;日本標準牌號:SKD61;日本日立?(HITACHI) 標準牌號:DAC;日本不二越 (NACHI) 標準牌號: HDS61;奧地利百祿 (BOHLER)標準牌號:W302。
擴展資料:
強度性能:
(1)硬度是模具鋼的主要技術指標,模具在高應力的作用下欲保持其形狀尺寸不變,必須具有足夠高的硬度。冷作模具鋼在室溫條件下一般硬度保持在HRC60左右,熱作模具鋼根據其工作條件,一般要求保持在HRC40~55范圍。
對于同一鋼種而言,在一定的硬度值范圍內,硬度與變形抗力成正比;但具有同一硬度值而成分及組織不同的鋼種之間,其塑性變形抗力可能有明顯的差別。
(2)紅硬性 在高溫狀態下工作的熱作模具,要求保持其組織和性能的穩定,從而保持足夠高的硬度,這種性能稱為紅硬性。
碳素工具鋼、低合金工具鋼通常能在180~250℃的溫度范圍內保持這種性能,鉻鉬熱作模具鋼一般在550~600℃的溫度范圍內保持這種性能。鋼的紅硬性主要取決于鋼的化學成分和熱處理工藝。
(3)抗壓屈服強度和抗壓彎曲強度 模具在使用過程中經常受到強度較高的壓力和彎曲的作用,因此要求模具材料應具有一定的抗壓強度和抗彎強度。在很多情況下,進行抗壓試驗和抗彎試驗的條件接近于模具的實際工作條件。
抗彎試驗的另一個優點是應變量的絕對值大,能較靈敏地反映出不同鋼種之間以及在不同熱處理和組織狀態下變形抗力的差別。
參考資料來源:百度百科-模具鋼材
塑膠模具鋼有哪些材料
P20(P20H)
特性應用
高硬度,高光潔度及耐磨性,
適合PA.POM.PS.PE.PP,ABS塑料模具
瑞典一勝百 S136H
特性應用
高純度,高鏡面度,拋光性能好,防銹防酸能力極佳 適用于鏡面模,防酸性高,
可保證冷卻管道不受銹蝕.適合PVC PP、EP、PC、PMMA塑膠,食品工業機械構件
瑞典一勝百 718H
特性應用
出廠時因硬度高,拋光性更佳,耐磨性更好,抗拉強度及抗壓強度更高 適用于
高 拋光度及高要求內模件,適合PA ,POM,PS,PE,PP,ABS塑
日本 NAK80
特性應用
高硬度,鏡面效果特佳,放電加工良好,焊接性能極佳, 適用于電蝕及拋光性
能模具。
瑞典一勝百S136
特性應用
適用于鏡面模,淬火之后防酸性高,可保證冷卻管道不受 銹蝕 適合PVC、PP、
EP、PC、PMMA塑膠,食品工業機械構件
德國JS2738
特性應用
鋼材加入鎳成份,硬度均勻,切削,切削良好,用于高要求的塑膠模具 尤其適
合電蝕操作高韌性塑膠模具
德國JS2316
特性應用
高鉻不銹鋼,預加硬,抗腐蝕性效果特佳,拋光及切削良好易達鏡面 效果,適
合于透明、鏡面產品之模具防酸模具鋼,適合PVC、POM、。
瑞典618
特性應用
防酸模具鋼,適合生產PS、SAN等
德國JS2311
特性應用
一般要求塑膠模具
德國JS2083
特性應用
防酸模具鋼,適合生產PS、SAN等
德國JS2379
特性應用
淬火性佳,熱處理變形小,耐磨,耐沖擊。適用于冷擠壓成形 拉伸模、沖裁模
精密 沖壓模、高硬度材料沖裁模。
瑞典一勝百 8407
特性應用
熱模鋼,高溫韌性、耐磨性、耐熱性特佳,適用于金屬壓鑄,擠壓模 復模下模,
PA、POM、PS、PE、EP塑膠模
德國JS2344
特性應用
各種冷模,成形軋輥,剪刀,形狀繁雜之冷壓工具,塑膠模等
日本SLD(SKD11)
特性應用
各種冷模,成形軋輥,剪刀,形狀繁雜之冷壓工具,塑膠模等 鋁、鎂鋅合金壓鑄模
日本DAC(SKD61)
特性應用
高拋光度及高要求內模件,適合PA,POM,PS,PE,PP,ABS塑料。 一般要求塑
膠模具
模具鋼材料有哪些?
常用的模具鋼材料有以下這些:
1、沖裁模具鋼
沖裁模具鋼主要用于各種板料的沖切成型,其刃口在工作過程中受到強烈的磨擦和沖擊這種模具鋼具有較高的耐磨性、沖擊韌性以及耐疲勞斷裂性能。
2、擠壓模具鋼
擠壓模具鋼主要用于變形成型,工作時沖頭承受巨大的壓力,凹模則承受巨大的張力;由于金屬在型腔中劇烈流動,使沖頭和凹模工作面受到強烈地摩擦,并使模具表面溫度上升200——300℃,這種模具鋼具有較高的變形抗力、耐磨性及斷裂抗力,此外還應具有高的回火穩定性。
3、拉伸模具鋼
拉伸模具鋼主要用于具有一定塑性板料的拉深成型,工作應力不大,但凹模入口處承受強烈摩擦,具有高的硬度及耐磨性,工作表面粗糙度較低。
4、彎曲模具鋼
彎曲模具鋼主要用于具有一定塑性金屬材料的彎曲成型,作用于模具的負荷不很大,但有一定摩擦,具有高的耐磨性和斷裂能力。
5、塑料模具鋼
塑料模具鋼分為熱固性塑料壓模和熱塑性塑料注射模:
熱固性塑料壓模主要用于具有一定塑性金屬材料的彎曲成型,作用于模具的負荷不很大,但有一定摩擦,具有高的耐磨性和斷裂能力。
熱塑性塑料注射模受熱、受壓及摩擦不太嚴重,部分塑料制品含有氯及氟,在壓制時放出腐蝕性氣體,侵蝕型腔表面,具有較高的抗蝕性及一定的耐磨性和強韌性。
模具鋼的性能要求
1. 強度性能
(1)硬度硬度是模具鋼的主要技術指標,模具在高應力的作用下欲保持其形狀尺寸不變,必須具有足夠高的硬度。冷作模具鋼在室溫條件下一般硬度保持在HRC60左右,熱作模具鋼根據其工作條件,一般要求保持在HRC40~55范圍。對于同一鋼種而言,在一定的硬度值范圍內,硬度與變形抗力成正比;但具有同一硬度值而成分及組織不同的鋼種之間,其塑性變形抗力可能有明顯的差別。
(2)紅硬性 在高溫狀態下工作的熱作模具,要求保持其組織和性能的穩定,從而保持足夠高的硬度,這種性能稱為紅硬性。碳素工具鋼、低合金工具鋼通常能在180~250℃的溫度范圍內保持這種性能,鉻鉬熱作模具鋼一般在550~600℃的溫度范圍內保持這種性能。鋼的紅硬性主要取決于鋼的化學成分和熱處理工藝。
(3)抗壓屈服強度和抗壓彎曲強度 模具在使用過程中經常受到強度較高的壓力和彎曲的作用,因此要求模具材料應具有一定的抗壓強度和抗彎強度。在很多情況下,進行抗壓試驗和抗彎試驗的條件接近于模具的實際工作條件(例如,所測得的模具鋼的抗壓屈服強度與沖頭工作時所表現出來的變形抗力較為吻合)。抗彎試驗的另一個優點是應變量的絕對值大,能較靈敏地反映出不同鋼種之間以及在不同熱處理和組織狀態下變形抗力的差別。
2. 韌性
在工作過程中,模具承受著沖擊載荷,為了減少在使用過程中的折斷、崩刃等形式的損壞,要求模具鋼具有一定的韌性。
模具鋼的化學成分,晶粒度,純凈度,碳化物和夾雜物等的數量、形貌、尺寸大小及分布情況,以及模具鋼的熱處理制度和熱處理后得到的金相組織等因素都對鋼的韌性帶來很大的影響。特別是鋼的純凈度和熱加工變形情況對于其橫向韌性的影響更為明顯。鋼的韌性、強度和耐磨性往往是相互矛盾的。因此,要合理地選擇鋼的化學成分并且采用合理的精煉、熱加工和熱處理工藝,以使模具材料的耐磨性、強度和韌性達到最佳的配合。
沖擊韌性系表特征材料在一次沖擊過程中試樣在整個斷裂過程中吸收的總能量。但是很多工具是在不同工作條件下疲勞斷裂的,因此,常規的沖擊韌性不能全面地反映模具鋼的斷裂性能。小能量多次沖擊斷裂功或多次斷裂壽命和疲勞壽命等試驗技術正在被采用。
3. 耐磨性
決定模具使用壽命最重要的因素往往是模具材料的耐磨性。模具在工作中承受相當大的壓應力和摩擦力,要求模具能夠在強烈摩擦下仍保持其尺寸精度。模具的磨損主要是機械磨損、氧化磨損和熔融磨損三種類型。為了改善模具鋼的耐磨性,就要既保持模具鋼具有高的硬度,又要保證鋼中碳化物或其他硬化相的組成、形貌和分布比較合理。對于重載、高速磨損條件下服役的模具,要求模具鋼表面能形成薄而致密粘附性好的氧化膜,保持潤滑作用,減少模具和工件之間產生粘咬、焊合等熔融磨損,又能減少模具表面進行氧化造成氧化磨損。所以模具的工作條件對鋼的磨損有較大的影響。
耐磨性可用模擬的試驗方法,測出相對的耐磨指數,作為表征不同化學成分及組織狀態下的耐磨性水平的參數。以呈現規定毛刺高度前的壽命,反映各種鋼種的耐磨水平;試驗是以Cr12MoV鋼為基準進行對比。
4. 抗熱疲勞能力
熱作模具鋼在服役條件下除了承受載荷的周期性變化之外,還受到高溫及周期性的急冷急熱的作用,因此,評價熱作模具鋼的斷裂抗力應重視材料的熱機械疲勞斷裂性能。熱機械疲勞是一種綜合性能的指標,它包括熱疲勞性能、機械疲勞裂紋擴展速率和斷裂韌性三個方面。
熱疲勞性能反映材料在熱疲勞裂紋萌生之前的工作壽命,抗熱疲勞性能高的材料,萌生熱疲勞裂紋的熱循環次數較多;機械疲勞裂紋擴展速率反映材料在熱疲勞裂紋萌生之后,在鍛壓力的作用下裂紋向內部擴展時,每一應力循環的擴展量;斷裂韌性反映材料對已存在的裂紋發生失穩擴展的抗力。斷裂韌性高的材料,其中的裂紋如要發生失穩擴展,必須在裂紋尖端具有足夠高的應力強度因子,也就是必須有較大的裂紋長度。在應力恒定的前提下,在一種模具中已經存在一條疲勞裂紋,如果模具材料的斷裂韌性值較高,則裂紋必須擴展得更深,才能發生失穩擴展。
也就是說,抗熱疲勞性能決定了疲勞裂紋萌生前的那部分壽命;而裂紋擴展速率和斷裂韌性,可以決定當裂紋萌生后發生亞臨界擴展的那部分壽命。因此,熱作模具如要獲得高的壽命,模具材料應具備高的抗熱疲勞性能、低的裂紋擴展速率和高的斷裂韌性值。
抗熱疲勞性能的指標可以用萌生熱疲勞裂紋的熱循環數,也可以用經過一定的熱循環后所出現的疲勞裂紋的條數及平均的深度或長度來衡量。
5. 咬合抗力
咬合抗力實際就是發生“冷焊”時的抵抗力。該性能對于模具材料較為重要。試驗時通常在干摩擦條件下,把被試驗的工具鋼試樣與具有咬合傾向的材料(如奧氏體鋼)進行恒速對偶摩擦運動,以一定的速度逐漸增大載荷,此時,轉矩也相應增大,該載荷稱為“咬合臨界載荷”,臨界載荷愈高,標志著咬合抗力愈強。
模具的力學性能要求
模具的力學性能要求
模具除其本身外,還需要模座、模架、模芯導致制件頂出裝置等,這些部件一般都制成通用型。下面,我為大家分享模具的力學性能要求,希望對大家有所幫助!
硬度
硬度表征了鋼對變形和接觸應力的抗力。測硬度的試樣易于制備,車間、試驗室一般都配備有硬度計,因此,硬度是很容易測定的一種性能,而且硬度與強度也有一定關系,可通過硬度強度換算關系得到材料硬度值。按硬度范圍劃定的模具類別,如高硬度(52~60HRC),一般用于冷作模具,中等硬度(40~52HRC),一般用于熱作模具。
鋼的硬度與成分和組織均有密切關系,通過熱處理,可以獲得很寬的硬度變化范圍。如新型模具鋼012Al和CG-2可分別采用低溫回火處理后硬度為60~62HRC,采用高溫回火處理后硬度為50~52HRC,因此可用來制作硬度要求不同的冷、熱作模具。因而這類模具鋼可稱為冷作、熱作兼用型模具鋼。
模具鋼中除馬氏體基體外,還存在更高硬度的其他相,如碳化物、金屬間化合物等。表l為常見碳化物及合金相的硬度值。
模具鋼的硬度主要取決于馬氏體中溶解的碳量(或含氮量),馬氏體中的含碳量取決于奧氏體化溫度和時間。當溫度和時間增加時,馬氏體中的含碳量增多馬氏體硬度會增加,但淬火加熱溫度過高會使奧氏體晶粒增大,淬火后殘留奧氏體量增多,又會導致硬度下降。因此,為選擇最佳淬火溫度,通常要先作出該鋼的淬火溫度—晶粒度—硬度關系曲線。
馬氏體中的含碳量在一定程度上與鋼的合金化程度有關,尤其當回火時表現更明顯。隨回火溫度的增高,馬氏體中的含碳量在減少,但當鋼中合金含量越高時,由于獼散的合金碳化物折出及殘留奧氏體向馬氏體的轉變,所發生的二次硬化效應越明顯,硬化峰值越高。
常用硬度測量方法有以下幾種:
1.洛氏硬度(HR) 是最常用的一種硬度測量法,測量簡便、迅速,數值可以從表盤上直接選出。洛氏硬度常用三種刻度,即HRC、HRA、HRB。
2.布氏硬度(HB) 用淬火鋼球作硬度頭,加上一定試驗力壓人工件表面,試驗力卸掉以后測量壓痕直徑大小,再查表或計算,使得出相應的布氏硬度值HB。
布氏硬度測試主要用于退火、正火、調質等模具鋼的硬度測定。
3.維氏硬度(HV) 采用的壓頭是具有正方形底面的金剛石角錐體,錐體相對兩面間的夾角為136,硬度值等于試驗力F與壓痕表面積之比值。
此法可以測試任何金屬材料的硬度,但最常用于測定顯微硬度,即金屬內部不同組織的硬度。
三種硬度大致有如下的關系:HRC≈1/10HB,HV≈HB(當400HBS時)
常規力學性能
模具材料的性能是由模具材料的成分和熱處理后的組織所決定的。模具鋼的基本組織是由馬氏體基體以及在基體上分布著的碳化物和金屬間化合物等構成。
模具鋼的性能應該滿足某種模具完成額定工作量所具備的性能,但因各類模具使用條件及所完成的額定工作量指標均不相同,故對模具性能要求也不同。又因為不同鋼的化學成分和組織對各種性能的影響不同,即使同一牌號的鋼也不可能同時獲得各種性能的最佳值,一般某些性能的改善會損失其他的性能。因而,模具工作者常根據模具工作條件及工作定額要求選用模具鋼及最佳處理工藝,使之達到主要性能最優,而其他性能損失最小的目的。
對各類模具鋼提出的性能要求主要包括:硬度、強度、塑性和韌性等。
強度
強度即鋼材在服役過程中,抵抗變形和斷裂的能力。對于模具來說則是整個型面或各個部位在服役過程中抵抗拉伸力、壓縮力、彎曲力、扭轉力或綜合力的能力。
衡量鋼材強度常用的方法是進行拉伸試驗。拉伸試驗是在拉伸試驗機上進行的,試棒需按規定的標準制備,拉伸過程中在記錄紙上繪出拉伸力F與伸長量L之間的關系圖,即所謂的拉伸曲線圖,分析拉伸曲線圖就可以得出金屬的強度指標。對于在壓縮條件下工作的模具,還經常給出抗壓強度。
對于模具鋼,特別是含碳量高的冷作模具鋼,因塑性很差,一般不用抗拉強度而是以抗彎強度作為實用指標。抗彎試驗甚至對極脆的材料也能反映出一定的塑性。而且,彎曲試驗產生的應力狀態與許多模具工作表面產生的應力狀態極相似,能比較精確地反映出材料的成分及組織因素對性能的影響。
在拉伸曲線圖上有一個特殊點,當拉力到達這一點時,試棒在拉力不增加或有所下降情況下發生明顯伸長變形,這種現象稱為屈服。這時的應力稱為這種材料的屈服點。而當外力去除后不能恢復原狀的變形,這部分變形被保留下來,成為永久變形,稱為塑性變形。屈服點是衡量模具鋼塑性變形抗力的指標,也是最常用的強度指標。對模具材料要求具有高的屈服強度,如果模具產生了塑性變形,那么模具加工出來的零件尺寸和形狀就會發生變化,產生廢品,模具也就失效了。
塑性
淬硬的模具鋼塑性較差,尤其是冷變形模具鋼,在很小的塑性變形時即發生脆斷。衡量模具鋼塑性好壞,通常采用斷后伸長率和斷面收縮率兩個指標表示。
斷后伸長率是指拉伸試樣拉斷以后長度增加的相對百分數,以表示。斷后伸長率數值越大,表明鋼材塑性越好。熱模鋼的塑性明顯高于冷模鋼。
斷面收縮率是指拉伸試棒經拉伸變形和拉斷以后,斷裂部分截面的縮小量與原始截面之比,以表示。塑性材料拉斷以后有明顯的縮頸,所以值較大。而脆性材料拉斷后,截面幾乎沒有縮小,即沒有縮頸產生,值很小,說明塑性很差。
韌性
韌性是模具鋼的一種重要性能指標,韌性決定了材料在沖擊試驗力作用下對破裂的抗斷能力。材料的韌性越高,脆斷的危險性越小,熱疲勞強度也越高。對于衡量模具脆斷傾向,沖擊韌度試驗具有重要意義。
沖擊韌度是指沖擊試樣缺口處截面積上的沖擊吸收功,而沖擊吸收功是指規定形狀和尺寸的試樣在沖擊試驗力一次作用下折斷時所吸收的功。沖擊試驗有夏比U形缺口沖擊試驗(試樣開成U形缺口)、夏比V形缺口沖擊試驗(試樣開成V形缺口)以及艾式沖擊試驗。
影響沖擊韌度的因素很多。不同材質的模具鋼沖擊韌度相差很大,即使同一種材料,因組織狀態不同、晶粒大小不同、內應力狀態不同沖擊韌度也不相同。通常是晶粒越粗大,碳化物偏析越嚴重(帶狀、網狀等),馬氏體組織越粗大等都會促使鋼材變脆。溫度不同,沖擊韌度也不相同。一般情況是溫度越高沖擊韌度值越高,而有的鋼常溫下韌性很好,當溫度下降到零下20~40℃時會變成脆性鋼。
為了提高鋼的韌性,必須采取合理的鍛造及熱處理工藝。鍛造時應使碳化物盡量打碎,并減少或消除碳化物偏析,熱處理淬火時防止晶粒過于長大,冷卻速度不要過高,以防內應力產生。模具使用前或使用過程中應采取一些措施減少內應力。
特殊性能要求
由于模具種類繁多,工作條件差別很大,因此模具的常規性能及相互配合要求也各不相同,而且某種模具實際性能與試樣在特定條件下測得的數據也不一致。所以,除測定材料的常規性能外,還必須根據所模擬的實際工況條件,對模具使用特性進行測量,并對模具的特殊性能提出要求,建立起正確評價模具性能的體系。
對熱作模具必須測試在高溫條件下的硬度、強度和沖擊韌度。因為熱作模具是在某一特定溫度下服役,在室溫下測定的性能數據,當溫度升高時要發生變化。性能變化趨勢和速率相差也很大,如A種材料在室溫下硬度雖比材料B高,但隨溫度上升,硬度下降顯著,到達—定溫度后,硬度值反而會低于材料B。那么,當在較高溫度工作條件下要求耐磨性高時,就不能選用A種材料,而需選用室溫下硬度值雖較低但隨溫度上升,硬度下降緩慢的材料B。
對熱作模具除要求室主高溫條件下的硬度、強度、韌性外,還要求具有某些特殊性能。
熱穩定性
熱穩定性表征鋼在受熱過程中保持金相組織和性能的穩定能力。通常,鋼的熱穩定性用回火保溫4h,硬度降到45HRC時的'最高加熱溫度表示。這種方法與材料的原始硬度有關,有資料將達到預定強度級別的鋼加熱,保溫2h,使硬度降到一般熱鍛模失效硬度35HRC的最高加熱溫度定為該鋼穩定性指標。對于因耐熱性不足而堆積塌陷失效的熱作模具,可以根據熱穩定性預測模具的壽命水平。
回火穩定性
回火穩定性指隨回火溫度升高,材料的強度和硬度下降快慢的程度,也稱回火抗力或抗回火軟化能力。通常以鋼的回火溫度-硬度曲線來表示,硬度下降慢則表示回火穩定性高或回火抗力大。回火穩定性也是與回火時組織變化相聯系的,它與鋼的熱穩定性共同表征鋼在高溫下的組織穩定性程度,表征模具在高溫下的變形抗力。
斷裂抗力
除常規力學性能如沖擊韌度、抗壓強度、抗彎強度等一次性斷裂抗力指標外,小能量多次沖擊斷裂抗力更切合冷作模具實際使用狀態性能。作為模具材料性能指標還包括抗壓疲勞強度、接觸疲勞強度等。這種疲勞斷裂抗力指標是由在一定循環應力下測得的斷裂循環次數,或在一定循環次數下導致斷裂的載荷來表征的。關于是否把斷裂韌度作為冷作模具材料的一項重要處能指標,尚待研究和探討。
抗咬合能力及抗軟化能力
抗咬合及抗軟化能力分別表征了模具對發生“冷焊”及承載時因溫度升高對硬度、耐磨性助抵抗能力。
熱疲勞抗力及斷裂韌度
熱疲勞抗力表征了材料熱疲勞裂紋萌生前的工作壽命和萌生后的擴展速率。熱疲勞通常以20℃—750℃條件下反復加熱冷卻時所發生裂紋的循環次數或當循環一定次數后測定裂紋長度來確定。熱疲勞抗力高的材料不易發生熱疲勞裂紋,或當裂紋萌生后,擴展量小、擴展緩慢。斷裂韌度則表征了裂紋失穩擴展抗力,斷裂韌度高,則裂紋不易發生失穩擴展。
高溫磨損與抗氧化性能
高溫磨損是熱作模具主要失效形式之一,正常情況下,絕大多數錘鍛模及壓力機模具都因磨損而失效。抗熱磨損是對熱作模具的使用性能的要求,是多種高溫力學性能的綜合體現。現在國內已有單位在自制的熱磨損機上進行模具熱磨損試驗,收到較理想的試驗效果。
實際使用表明,模具材料抗氧化性能的優劣,對模具使用壽命影響很大。因氧化會加劇模具工作過程中的磨損,導致模具型腔尺寸超差而報廢。氧化還會使模具表面產生腐蝕溝,成為熱疲勞裂紋起源.加劇模具熱疲勞裂紋的萌生與擴展。因此,要求模具具備一定的抗氧化性能。
對冷作模具鋼除常規力學性能外,還常要求具有下列性能:
耐磨性能,斷裂抗力,抗咬合計抗氧化能力。
耐磨損性能
冷作模具服役時,被成形的坯料會沿著模具表面既滑動又流動,在模具與坯料間產生很大摩擦力。這種摩擦力使模具表面受到切應力作用,在其表面劃刻出凹凸痕跡,這些痕跡與坯料不平整表面相咬合,逐漸在模具表面造成機械破損即磨損。冷作模具,特別是正常失效的冷作模具,多數因磨損而報廢。因此,對冷作模具最基本的要求之一就是耐磨性。一般條件下材料硬度越高,耐磨性越好。但耐磨性與在軟基體上存在的硬質點的形狀、分布也有很大關系。
冷作模具的磨損包括磨料磨損、粘著磨損、腐蝕磨損與疲勞磨損。
模具制造心得
它有著生產成本低廉、產品一致性較好的優勢,而且應用范圍很大,從簡單的碗盤等日常用品到復雜的雕塑等造型的創作和生產都離不開模具成型。它是陶瓷藝術工作者、陶瓷藝術愛好者所要著重掌握和了解的技能。我們這次的學習包括石膏漿的調制、同心圓造型、異型造型的車削翻模。了解石膏的材料特性,掌握使用方法步驟。并懂得陶瓷模種制作和翻制的方法步驟。
首先我們繪制好我們自己所想要的同心圓造型及異型造型。然后將圖紙擴印,根據圖紙來進行制作。
然后是制作模種了,利用準備好的工具在車模機上做出我們在圖紙上所畫出的同心圓瓶子的形狀,大小。然后根據中線進行手工削制,最后,用耐水砂紙打磨平滑。
制作石膏模型首先要調制石膏料。石膏料的調制方法簡單,首先準備好盆和石膏粉,然后在盆中先加入適量的水,再慢慢把石膏粉沿盆邊撒入水中,一定要按照順序先加水再加石膏。由于石膏料干固時間較短,而且要看天氣而定。
然后到掉浮在石灰上面的一層水后,用手在里面均勻的攪拌,直到石膏粉冒出水面不再自然吸水沉陷,稍等片刻,就繼續攪拌,要快速有力、用力均勻,成糊狀即可。覺得差不多以后,就要等上6分種左右。接下來就可以將石膏漿倒到事先已經用模板擋好的模型上
,需要等上一會兒,覺得石膏干濕適中后,就可以通過各種工具在上面進行適當的操作。大約幾分鐘后拆去模板,迅速用刮刀或鏟刀修出模型的大體形狀;修表時應先從整體入手,再進行局部的精雕細刻,修大形時速度要快、要趕在石膏完全因化之前,否則石膏完全固化后鏟削會很吃力。
其次是修形。修形是最關鍵的一步,不僅要有技巧,好要有耐心。先用小刀把初型進一步削修準確,接著用短鋸條刮削,再用鋸條北面進行刮削,這樣模型將進一步接近實物造型;對于一些有變化的小曲面來說,還需要把鋸條磨成小曲面的形狀進行刮削;最后用砂紙蘸水打磨。精修過程要由粗到細、由整體到局部再到整體,要不時地從各個角度和各個面去比較、去審視、去測量,這樣模型的整體感才強。如果模型表面有缺陷或邊角崩缺則需要修補,首先要濕潤需要修補處,然后用石膏漿填平,等干燥后打磨平整。
在做異形翻模時,我們用泥墊底,并圍好造型。模具邊上開牙口。在石膏模種上均勻涂抹脫模劑,然后用模板圍出模具的外緣。在有縫隙的地方用泥巴塞好。然后再把石膏漿倒進里面,要稍高出異性一些體積。等石膏差不多發熱干了再拆除模板。再用同種方法翻另外一塊。等模具翻制完成后,等石膏發熱反應冷卻了,就可以開模取出模種,如果不容易打開的話,可以用水沖泡然后輕輕搖動的方法打開。
以上便是我對這次模具制作過程的了解。
模型制作課程已經結束了,但是這其中經歷的東西,學到的知識會陪伴著我們,讓我們更好的解決以后面臨的問題。
我自認為在修造型的基礎還不夠,對翻模的操作也不夠熟練但我會更加努力爭取早日彌補自己的不足!
最后謝謝老師多日來的教導!
;
熱作模具鋼的抗壓強度的介紹就聊到這里吧,感謝你花時間閱讀本站內容。

admin
發表評論