gc411ct美國通用硬質合金(yg20c硬質合金)

博主:adminadmin 2023-08-18 20:40:01 條評論
摘要:本篇文章給大家談談gc411ct美國通用硬質合金,以及yg20c硬質合金對應的知識點,希望對各位有所幫助。數控機床車刀的發展與保...
鋼百科 usteel.net

本篇文章給大家談談gc411ct美國通用硬質合金,以及yg20c硬質合金對應的知識點,希望對各位有所幫助。

數控機床車刀的發展與保養~~,高分

刀具的發展在人類進步的歷史上占有重要的地位。中國早在公元前28~前20世紀,就已出現黃銅錐和紫銅的錐、鉆、刀等銅質刀具。戰國后期(公元前三世紀),由于掌握了滲碳技術,制成了銅質刀具。當時的鉆頭和鋸,與現代的扁鉆和鋸已有些相似之處。

gc411ct美國通用硬質合金(yg20c硬質合金)

然而,刀具的快速發展是在18世紀后期,伴隨蒸汽機等機器的發展而來的。1783年,法國的勒內首先制出銑刀。1792年,英國的莫茲利制出絲錐和板牙。有關麻花鉆的發明最早的文獻記載是在1822年,但直到1864年才作為商品生產。

那時的刀具是用整體高碳工具鋼制造的,許用的切削速度約為5米/分。1868年,英國的穆舍特制成含鎢的合金工具鋼。1898年,美國的泰勒和.懷特發明高速鋼。1923年,德國的施勒特爾發明硬質合金。

在采用合金工具鋼時,刀具的切削速度提高到約8米/分,采用高速鋼時,又提高兩倍以上,到采用硬質合金時,又比用高速鋼提高兩倍以上,切削加工出的工件表面質量和尺寸精度也大大提高。

由于高速鋼和硬質合金的價格比較昂貴,刀具出現焊接和機械夾固式結構。1949~1950年間,美國開始在車刀上采用可轉位刀片,不久即應用在銑刀和其他刀具上。1938年,德國德古薩公司取得關于陶瓷刀具的專利。1972年,美國通用電氣公司生產了聚晶人造金剛石和聚晶立方氮化硼刀片。這些非金屬刀具材料可使刀具以更高的速度切削。

1969年,瑞典山特維克鋼廠取得用化學氣相沉積法,生產碳化鈦涂層硬質合金刀片的專利。1972年,美國的邦沙和拉古蘭發展了物理氣相沉積法,在硬質合金或高速鋼刀具表面涂覆碳化鈦或氮化鈦硬質層。表面涂層方法把基體材料的高強度和韌性,與表層的高硬度和耐磨性結合起來,從而使這種復合材料具有更好的切削性能。

刀具按工件加工表面的形式可分為五類。加工各種外表面的刀具,包括車刀、刨刀、銑刀、外表面拉刀和銼刀等;孔加工刀具,包括鉆頭、擴孔鉆、鏜刀、鉸刀和內表面拉刀等;螺紋加工工具,包括絲錐、板牙、自動開合螺紋切頭、螺紋車刀和螺紋銑刀等;齒輪加工刀具,包括滾刀、插齒刀、剃齒刀、錐齒輪加工刀具等;切斷刀具,包括鑲齒圓鋸片、帶鋸、弓鋸、切斷車刀和鋸片銑刀等等。此外,還有組合刀具。

按切削運動方式和相應的刀刃形狀,刀具又可分為三類。通用刀具,如車刀、刨刀、銑刀(不包括成形的車刀、成形刨刀和成形銑刀)、鏜刀、鉆頭、擴孔鉆、鉸刀和鋸等;成形刀具,這類刀具的刀刃具有與被加工工件斷面相同或接近相同的形狀,如成形車刀、成形刨刀、成形銑刀、拉刀、圓錐鉸刀和各種螺紋加工刀具等;展成刀具是用展成法加工齒輪的齒面或類似的工件,如滾刀、插齒刀、剃齒刀、錐齒輪刨刀和錐齒輪銑刀盤等。

各種刀具的結構都由裝夾部分和工作部分組成。整體結構刀具的裝夾部分和工作部分都做在刀體上;鑲齒結構刀具的工作部分(刀齒或刀片)則鑲裝在刀體上。

刀具的裝夾部分有帶孔和帶柄兩類。帶孔刀具依靠內孔套裝在機床的主軸或心軸上,借助軸向鍵或端面鍵傳遞扭轉力矩,如圓柱形銑刀、套式面銑刀等。

帶柄的刀具通常有矩形柄、圓柱柄和圓錐柄三種。車刀、刨刀等一般為矩形柄;圓錐柄靠錐度承受軸向推力,并借助摩擦力傳遞扭矩;圓柱柄一般適用于較小的麻花鉆、立銑刀等刀具,切削時借助夾緊時所產生的摩擦力傳遞扭轉力矩。很多帶柄的刀具的柄部用低合金鋼制成,而工作部分則用高速鋼把兩部分對焊而成。

刀具的工作部分就是產生和處理切屑的部分,包括刀刃、使切屑斷碎或卷攏的結構、排屑或容儲切屑的空間、切削液的通道等結構要素。有的刀具的工作部分就是切削部分,如車刀、刨刀、鏜刀和銑刀等;有的刀具的工作部分則包含切削部分和校準部分,如鉆頭、擴孔鉆、鉸刀、內表面拉刀和絲錐等。切削部分的作用是用刀刃切除切屑,校準部分的作用是修光已切削的加工表面和引導刀具。

刀具工作部分的結構有整體式、焊接式和機械夾固式三種。整體結構是在刀體上做出切削刃;焊接結構是把刀片釬焊到鋼的刀體上;機械夾固結構又有兩種,一種是把刀片夾固在刀體上,另一種是把釬焊好的刀頭夾固在刀體上。硬質合金刀具一般制成焊接結構或機械夾固結構;瓷刀具都采用機械夾固結構。

刀具切削部分的幾何參數對切削效率的高低和加工質量的好壞有很大影響。增大前角,可減小前刀面擠壓切削層時的塑性變形,減小切屑流經前面的摩擦阻力,從而減小切削力和切削熱。但增大前角,同時會降低切削刃的強度,減小刀頭的散熱體積。

在選擇刀具的角度時,需要考慮多種因素的影響,如工件材料、刀具材料、加工性質(粗、精加工)等,必須根據具體情況合理選擇。通常講的刀具角度,是指制造和測量用的標注角度在實際工作時,由于刀具的安裝位置不同和切削運動方向的改變,實際工作的角度和標注的角度有所不同,但通常相差很小。

制造刀具的材料必須具有很高的高溫硬度和耐磨性,必要的抗彎強度、沖擊韌性和化學惰性,良好的工藝性(切削加工、鍛造和熱處理等),并不易變形。

通常當材料硬度高時,耐磨性也高;抗彎強度高時,沖擊韌性也高。但材料硬度越高,其抗彎強度和沖擊韌性就越低。高速鋼因具有很高的抗彎強度和沖擊韌性,以及良好的可加工性,現代仍是應用最廣的刀具材料,其次是硬質合金。

聚晶立方氮化硼適用于切削高硬度淬硬鋼和硬鑄鐵等;聚晶金剛石適用于切削不含鐵的金屬,及合金、塑料和玻璃鋼等;碳素工具鋼和合金工具鋼現在只用作銼刀、板牙和絲錐等工具。

硬質合金可轉位刀片現在都已用化學氣相沉積法涂覆碳化鈦、氮化鈦、氧化鋁硬層或復合硬層。正在發展的物理氣相沉積法不僅可用于硬質合金刀具,也可用于高速鋼刀具,如鉆頭、滾刀、絲錐和銑刀等。硬質涂層作為阻礙化學擴散和熱傳導的障壁,使刀具在切削時的磨損速度減慢,涂層刀片的壽命與不涂層的相比大約提高1~3倍以上。

由于在高溫、高壓、高速下,和在腐蝕性流體介質中工作的零件,其應用的難加工材料越來越多,切削加工的自動化水平和對加工精度的要求越來越高。為了適應這種情況,刀具的發展方向將是發展和應用新的刀具材料;進一步發展刀具的氣相沉積涂層技術,在高韌性高強度的基體上沉積更高硬度的涂層,更好地解決刀具材料硬度與強度間的矛盾;進一步發展可轉位刀具的結構;提高刀具的制造精度,減小產品質量的差別,并使刀具的使用實現最佳化。

涂層的切削性能明顯優于TiN涂層。加工Inconel178的刀具壽命盡管PVD涂層顯示出很多優點,但一些涂層如Al2O3和金剛石則傾向于采用CVD涂層技術。Al2O3是一種耐熱和抗氧化很強的涂層,它能夠將刀具體和切削產生的熱量隔離開。通過CVD涂層技術,還可以綜合各種涂層的優點,以達到最佳的切削效果,滿足切削加工的需要。

例如。TiN具有低摩擦特性,可減少涂層組織的損耗,TiCN可降低后刀面的磨損,TiC涂層硬度較高,Al2O3涂層具有優良的隔熱效果等。涂層硬質合金刀具與硬質合金刀具相比,無論在強度、硬度和耐磨性方面均有了很大提高。車削硬度在HRC45~55的工件,低成本的涂層硬質合金可實現高速車削。近年來,一些廠家應用改進涂層材料等方法,使涂層刀具的性能有了極大的提高。如美、日的一些廠家采用瑞士AlTiN涂層材料和新涂層專利技術生產的涂層刀片,硬度高達HV4500~4900,可在498.56m/min的速度時切削硬度HRC47~58的模具鋼。在車削溫度高達1500~1600C時仍然硬度不降低、不氧化,刀片壽命為一般涂層刀片的4倍,而成本只有30%,且附著力好。陶瓷材料 陶瓷刀具材料隨著其組成結構和壓制工藝的不斷改進,特別是納米技術的進展,使得陶瓷刀具的增韌成為可能,在不久的將來,陶瓷可能繼高速鋼、硬質合金以后引起切削加工的第3次革命。

陶瓷刀具具有高硬度(HRA91~95)、高強度(抗彎強度為750~1000MPa),耐磨性好,化學穩定性好,抗粘結性能良好,摩擦系數低且價格低廉等優點。不僅如此,陶瓷刀具還具有很高的高溫硬度,1200C時硬度達到HRA80。正常切削時,陶瓷刀具耐用度極高,切削速度可比硬質合金提高2~5倍,特別適合高硬度材料加工、精加工以及高速加工,可切削硬度達HRC65的各類淬硬鋼和硬化鑄鐵等。常用的有:氧化鋁基陶瓷、氮化硅基陶瓷、金屬陶瓷和晶須增韌陶瓷。

氧化鋁基陶瓷刀具比硬質合金有更高的紅硬性,高速切削狀態下切削刃一般不會產生塑性變形,但它的強度和韌性很低,為改善其韌性,提高耐沖擊性能,通常可加入ZrO或TiC和TiN的混合物,另一種方法是加入純金屬或碳化硅晶須。氮化硅基陶瓷除紅硬性高以外,還具有良好的韌性,與氧化鋁基陶瓷相比,它的缺點是在加工鋼時易產生高溫擴散,加劇刀具磨損,氮化硅基陶瓷主要應用于斷續車削灰鑄鐵及銑削灰鑄鐵。金屬陶瓷是一種以碳化物為基體材料,其中TiC為主要的硬質相(0.5~2m),它們通過Co或Ti粘結劑結合起來,是一種與硬質合金相似的刀具,但它具有較低的親和性、良好的摩擦性及較好的耐磨性。它比常規硬質合金能承受更高的切削溫度,但缺乏硬質合金的耐沖擊性、強力切削時的韌性以及低速大進給時的強度。

近年通過大量的研究、改進和采用新的制作工藝,其抗彎強度和韌性均有了很大提高,如日本三菱金屬公司開發的新型金屬陶瓷NX2525及瑞典山德維克公司開發的金屬陶瓷刀片新品CT系列和涂層金屬陶瓷刀片系列,其晶粒組織的直徑細小至1m以下,抗彎強度和耐磨性均遠高于普通的金屬陶瓷,大大拓寬了其應用范圍。立方氮化硼(CBN) CBN的硬度和耐磨性僅次于金剛石,有極好的高溫硬度,與陶瓷相比,其耐熱性和化學穩定性稍差,但沖擊強度和抗破碎性能較好。它廣泛適用于淬硬鋼(HRC≥50)、珠光體灰鑄鐵、冷硬鑄鐵和高溫合金等的切削加工,與硬質合金刀具相比,其切削速度可提高一個數量級。

CBN含量高的復合聚晶立方氮化硼(PCBN)刀具硬度高、耐磨性好、抗壓強度高及耐沖擊韌性好,其缺點是熱穩定性差和化學惰性低,適用于耐熱合金、鑄鐵和鐵系燒結金屬的切削加工。PCBN刀具中CBN顆粒含量較低,采用陶瓷作粘結劑,其硬度較低,但彌補了前一種材料熱穩定性差、化學惰性低的特點,適用淬硬鋼的切削加工。

陶瓷和PCBN刀具切削淬硬鋼的殘余應力在切削灰鑄鐵和淬硬鋼時,可選擇陶瓷刀具或CBN刀具,為此,應進行成本效益和加工質量分析,以確定選擇哪一種。圖3為Al2O3、Si3N4和CBN刀具加工灰鑄鐵后刀面磨損情況,PCBN刀具材料切削性能優于Al2O3和Si3N4。但在淬硬鋼干式切削時,Al2O3陶瓷的成本低于PCBN材料。陶瓷刀具有良好的熱化學穩定性,但卻不及PCBN刀具的韌性和硬度。在切削硬度低于HRC60以下和采用小進給量時,陶瓷刀具是較好的選擇。PCBN刀具適于切削硬度高于HRC60的工件,尤其在自動化加工和高精度加工時更為適用。

除此之外,在相同后刀面磨損情況下,PCBN刀具切削后的工件表面殘余應力也比陶瓷刀具相對穩定。使用PCBN刀具干式切削淬硬鋼還應遵循以下原則:在機床剛性允許條件下盡可能選擇大切深,這樣切削區生成的熱量使得刃前區金屬局部軟化,能有效降低PCBN刀具的磨損,此外,在小切深時還應考慮采用PCBN刀具導熱性差而使得切削區熱量來不及擴散,剪切區也能產生明顯的金屬軟化效應,減小切削刃的磨損。

超硬刀具的刀片結構及幾何參數刀片形狀及幾何參數的合理確定對充分發揮刀具切削性能是至關重要的。按刀具強度而言,各種刀片形狀的刀尖強度從高到低依次為:圓形、100菱形、正方形、80菱形、三角形、55菱形、35菱形。刀片材料選定后,應選用強度盡可能高的刀片形狀。硬車削刀片也應選擇盡可能大的刀尖圓弧半徑,用圓形及大刀尖圓弧半徑刀片粗加工,精加工時的刀尖圓弧半徑約為0.8m左右。淬硬鋼切屑為紅而酥軟的緞帶狀,脆性大,易折斷,不粘結,淬硬鋼切削表面質量高,一般不產生積屑瘤,但切削力較大,特別是徑向切削力比主切削力還要大,所以,刀具宜采用負前角(go≥-5)和較大的后角(ao=10~15)。主偏角取決于機床剛性,一般取45~60,以減少工件和刀具顫振。超硬刀具切削參數及對工藝系統的要求切削參數的選擇工件材料硬度越高,其切削速度應越小。使用超硬刀具進行硬車削精加工的適宜切削速度范圍為80~200m/min,常用范圍為10~150m/min;采用大切深或強力斷續切削高硬度材料,切速應保持在80~100m/min。一般情況下,切深為0.1~0.3mm之間。加工表面粗糙度低的工件,可選小的切削深度,但不能太小,要適宜。進給量通常可以選擇0.05~0.25mm/r之間,具體數值視表面粗糙度值和生產率要求而定。當表面粗糙度Ra=0.3~0.4m時,采用超硬刀具進行硬車削比用磨削經濟得多。

對工藝系統的要求除選擇合理的刀具外,采用超硬刀具進行硬車削對車床或車削中心并無特殊要求,若車床或車削中心剛度足夠,且加工軟的工件時能得到所要求的精度和表面粗糙度,即可用于硬切削。為了保證車削操作的平穩和連續,常用的方法是采用剛性夾緊裝置和中等前角刀具。若工件在切削力作用下其定位、支承和旋轉可以保持相當平穩狀態,現有的設備就可采用超硬刀具進行硬車削。超硬刀具在硬車削中的應用采用超硬刀具進行硬車削,此項技術經過十幾年的發展及推廣應用,獲得了巨大的經濟效益和社會效益。下面以軋輥加工等行業為例,說明超硬刀具在生產中的推廣應用情況。

軋輥加工行業國內許多大型軋輥企業已使用超硬刀具對冷硬鑄鐵、淬硬鋼等各類軋輥進行荒車、粗車和精車,均取得了良好的效益7平均提高加工效率2~6倍,節約加工工時和電力50%~80%。如武漢鋼鐵公司軋輥廠對硬度為HS60~80的冷硬鑄鐵軋輥粗車、半精車時,切削速度提高了3倍,每車1根軋輥,節約電力、工時費四百多元,節約刀具費近一百元,取得了巨大的經濟效益。如我校用FD22金屬陶瓷刀具車削HRC58~63的86CrMoV7淬硬鋼軋輥時(Vc=60m/min,f=0.2mm/r,ap=0.8mm),單刃連續切削軋輥路徑達15000m(刀尖后刀面磨損帶的最大寬度VBmax=0.2mm),滿足了以車代磨的要求。工業泵加工行業目前國內碴漿泵生產廠的70%~80%已采用超硬刀具。

碴漿泵廣泛應用于礦山、電力等行業,是國內外急需的產品,其護套、護板是HRC63~67的Cr15Mo3高硬鑄鐵件。過去由于各種刀具難以車削這種材料,所以只得采用退火軟化后粗加工,然后再淬火加工的工藝。采用超硬刀具以后,順利實現了一次硬化加工,免除了退火再淬火2道工序,節約了大量工時和電力。

汽車加工行業在汽車、拖拉機等行業中的曲軸、凸輪軸、傳動軸的加工,刃具、量具的加工和設備維修中,經常會碰到淬硬工件的加工難題。如我國某機車車輛廠,在設備維修中需要對軸承內圈進行加工,軸承內圈(材料GCr15鋼)的硬度為HRC60,內圈直徑為f285mm,采用磨削工藝,磨削余量不均勻,需2h才能磨好;而先用超硬刀具,僅用45min就加工成一個內環。

結語:經過多年的研究和探索,我國在超硬刀具方面取得了很大的進展,但是,超硬刀具在生產中的應用還不廣泛。原因主要有以下幾個方面:生產企業、操作者對采用超硬刀具進行硬車削的效果了解不夠,普遍認為硬材料只能磨削;認為刀具成本太高。硬車削最初的刀具成本比普通硬質合金刀具高(如PCBN比普通硬質合金貴十多倍),但其分攤在每個零件上的成本比磨削還低,且帶來的效益比普通硬質合金要好得多;對超硬刀具加工機理研究不夠;超硬刀具加工的規范不足以指導生產實踐。因此,除了對超硬刀具加工機理進行深入研究外,還必須加強超硬刀具加工知識的培訓、成功經驗演示及嚴格操作規范,使這種高效、潔凈的加工方法更多地應用于生產實際。

鎢鋼刀具的牌號?

鎢鋼刀具的牌號,就不同廠商來說就很多種,如果按照iso的牌號來看基本上就三種。

PMK。P主要加工鋼件,K可以加工鑄鐵和有色金屬如銅鋁等。M為通用硬質合金,可加工鋼件鑄鐵,不銹鋼等。其中區別在于硬質合金碳化物的含量。如K就是WC和Co,而P,M這含有TIC或者其他的一些碳化物

誰知道涂層硬質合金的分類及其的運用?

涂層刀具是在強度和韌性較好的硬質合金或高速鋼(HSS)基體表面上,利用氣相沉積方法涂覆一薄層耐磨性好的難熔金屬或非金屬化合物(也可涂覆在陶瓷、金剛石和立方氮化硼等超硬材料刀片上)而獲得的。涂層作為一個化學屏障和熱屏障,減少了刀具與工件間的擴散和化學反應,從而減少了月牙槽磨損。涂層刀具具有表面硬度高、耐磨性好、化學性能穩定、耐熱耐氧化、摩擦因數小和熱導率低等特性,切削時可比未涂層刀具提高刀具壽命3~5倍以上,提高切削速度20%~70%,提高加工精度0.5~1級,降低刀具消耗費用20%~50%。因此,涂層刀具已成為現代切削刀具的標志,在刀具中的使用比例已超過50%。目前,切削加工中使用的各種刀具,包括車刀、鏜刀、鉆頭、鉸刀、拉刀、絲錐、螺紋梳刀、滾壓頭、銑刀、成形刀具、齒輪滾刀和插齒刀等都可采用涂層工藝來提高它們的使用性能。

涂層刀具有四種:涂層高速鋼刀具,涂層硬質合金刀具,以及在陶瓷和超硬材料(金剛石或立方氮化硼)刀片上的涂層刀具。但以前兩種涂層刀具使用最多。在陶瓷和超硬材料刀片上的涂層是硬度較基體低的材料,目的是為了提高刀片表面的斷裂韌度(可提高10%以上),可減少刀片的崩刃及破損,擴大應用范圍。

涂層方法

目前生產上常用的涂層方法有兩種:物理氣相沉積(PVD) 法和化學氣相沉積(CVD) 法。前者沉積溫度為500℃,涂層厚度為2~5m;后者的沉積溫度為900℃~1100℃,涂層厚度可達5~10m,并且設備簡單,涂層均勻。因PVD法未超過高速鋼本身的回火溫度,故高速鋼刀具一般采用PVD法,硬質合金大多采用CVD法。硬質合金用CVD法涂層時,由于其沉積溫度高,故涂層與基體之間容易形成一層脆性的脫碳層(相),導致刀片脆性破裂。近十幾年來,隨著涂覆技術的進步,硬質合金也可采用PVD法。國外還用PVD/CVD相結合的技術,開發了復合的涂層工藝,稱為PACVD法(等離子體化學氣相沉積法)。即利用等離子體來促進化學反應,可把涂覆溫度降至400℃以下(目前涂覆溫度已可降至180℃~200℃),使硬質合金基體與涂層材料之間不會產生擴散、相變或交換反應,可保持刀片原有的韌性。據報道,這種方法對涂覆金剛石和立方氮化硼(CBN)超硬涂層特別有效。

用CVD法涂層時,切削刃需預先進行鈍化處理(鈍圓半徑一般為0.02~0.08mm,切削刃強度隨鈍圓半徑增大而提高),故刃口沒有未涂層刀片鋒利。所以,對精加工產生薄切屑、要求切削刃鋒利的刀具應采用PVD法。涂層除可涂覆在普通切削刀片上外,還可涂覆到整體刀具上,目前已發展到涂覆在焊的硬質合金刀具上。據報道,國外某公司在焊接式的硬質合金鉆頭上采用了PCVD法,結果使加工鋼料時的鉆頭壽命比高速鋼鉆頭長10倍,效率提高5倍。

金剛公司推出的各種新型涂層

涂 層 顏 色 硬 度HV 厚 度m 摩擦系數 最高使用溫度℃ 說 明

ZrCN復合 蘭灰 2500 1-4 0.3 550 通用性強

TiN單層 金黃 2300 1-4 0.4 500 高性價比涂層

TiAlN復合 紫色 3200 1-4 0.5 800 通用性強

AlTiN復合 黑 3400 1-4 0.5 900 高速、高硬度加工

TiAlCrN 亞黑 3500 1-4 0.6 1000 特殊加工領域

TiCN漸層 灰黑 3000 1-4 0.4 400 高韌性通用涂層

CrN漸層 銀亮 2000 3-15 0.5 700 適用加工銅、鈦、模具

DLC 黑彩 1000~4000 0.5-2 0.05 400 適用于有色金屬、石墨、塑膠

涂層材料

涂層材料須具有硬度高、耐磨性好、化學性能穩定、不與工件材料發生化學反應、耐熱耐氧化、摩擦因數低,以及與基體附著牢固等要求。顯然,單一的涂層材料很難滿足上述各項要求。所以硬質涂層材料已由最初只能涂單一的TiC、TiN、Al2O3,進入到開發厚膜、復合和多元涂層的新階段。新開發的TiCN、TiAlN、TiAlN多元、超薄、超多層涂層與TiC、TiN、Al2O3等涂層的復合,加上新型的抗塑性變形基體,在改善涂層的韌性、涂層與基體的結合強度、提高涂層耐磨性方面有了重大進展。目前,又突破了在硬質合金基體上涂覆金剛石薄膜技術,全面提高了刀具的性能。

工藝最成熟和應用最廣泛的硬質涂層材料是TiN,但TiN與基體結合強度不及TiC涂層,涂層易剝落,且硬度也不如TiC高,在切削溫度較高時膜層易氧化而被燒蝕。TiC涂層有較高的硬度與耐磨性,抗氧化性也好,但其性脆,不耐沖擊。TiCN兼有TiC和TiN兩種材料的優點,它在涂覆過程中可通過連續改變C、N的成份控制TiCN性質,并形成不同成份的多層結構,可降低涂層的內應力,提高韌性,增加涂層的厚度,阻止裂紋的擴展,減少崩刃。所以,目前生產的一些刀片,如瑞典Sandvik公司推薦用于加工鋼料的GC4000系列刀片、中國株洲硬質合金廠生產的CN系列刀片、日本東芝公司的T715X和T725X涂層刀片中均有TiCN涂層成份。TiCN基涂層適于加工普通鋼、合金鋼、不銹鋼和耐磨鑄鐵等材料,用它加工工件時的材料切除率可提高2~3倍。

TiAlN、CrN、TiAlCrN是近幾年來開發的硬質涂層新材料。TiAlN涂層刀片已商品化。它的化學穩定性和抗氧化磨損性能好,用其加工高合金鋼、不銹鋼、鈦合金和鎳合金時的刀具壽命可比TiN涂層高3~4倍。此外,TiAlN涂層中如果有合適的鋁濃度,切削時在刀具前刀面和切屑的界面上還會產生一層硬質的惰性保護膜,該膜有較好的隔熱性,可更有效地用于高速切削。例如,美國Kennametal公司推出的H7刀片,系TiAlN涂層,是專為高速銑削合金鋼、高合金鋼和不銹鋼等高性能材料而設計的。CrN是一種無鈦涂層,適于切削鈦和鈦合金、銅、鋁以及其它軟材料,化學穩定性好,不產生粘屑。TiAlCrN是一種梯度結構涂層,不僅具有高的韌性和硬度,而且摩擦因數也較小,適用于銑刀、滾刀、絲錐等多種刀具,切削性能明顯優于TiN。

德國某公司開發了Supernitride涂層系列,其中超級氮化鈦涂層有很高的含鋁量,可形成穩定的氧化層(氧化溫度達1000℃),它比一般的TiAlN涂層更硬、更致密、更耐高溫,適用于高速切削、干式切削和硬切削的刀具,可加工硬度高達58HRC以上的淬火鋼。

此外,納米超薄膜涂層工藝已日趨成熟。據報道,日本某公司推出了一種高速強力型鉆頭,它是在韌性好的K類(WC+Co)硬質合金基體上交互涂覆了1,000層TiN和AlN超薄膜涂層,涂層厚度約2.5m。使用表明,該鉆頭的抗彎強度與斷裂韌性可大幅度提高,其硬度則與CBN相當,刀具壽命可提高2倍左右。該公司還開發出ZX涂層立銑刀,超薄膜鍍層數達2,000層,每層厚度約1nm,用該立銑刀加工60HRC的高硬度材料,刀具壽命遠高于TiCN和TiAlN涂層刀具。第八屆中國國際機床展覽會(CIMT2003)上,瑞士某公司推出的納米結構涂層(AITiN/SiN) 立銑刀,其涂層硬度為45GPa,氧化溫度1100℃,切削對比試驗表明,其壽命比TiN涂層立銑刀高3倍,比TiAlCN涂層立銑刀高2倍。除上述AITiN/SiN、TiAlCN新涂層外,還有特定功能的涂層,如MoS2、DLC潤滑涂層,其摩擦因數小(0.05),適于涂覆絲錐、鉆頭等刀具,可改善排屑性能,或者作為復合涂層的表面涂層,減少切屑的粘結。

關于gc411ct美國通用硬質合金和yg20c硬質合金的介紹到此就結束了,記得收藏關注本站。

鋼百科 usteel.net